When all holes in a graph have the same length

Dewi Sintiari

Wilfrid Laurier University *

Based on a joint work with:
Jake Horsfield Myriam Preissmann Cléophée Robin
Nicolas Trotignon Kristina Vušković

Canadian Discrete and Algorithmic Mathematics (CanaDAM) Winnipeg, Canada

5-8 June 2023
*the presenter is currently a non-permanent faculty member at Universitas Pendidikan Ganesha, Indonesia

Holes in a graph

Hole $=$ chordless cycle of length at least 4; it is even or odd depending on the parity of its length.

an odd hole

an even hole

A subgraph H of G is an induced subgraph if $u v \in E(H)$ iff $u v \in E(G)$.

Figure: H is an induced subgraph of G, but H^{\prime} is not

Well-known graph classes forbidding holes

1. Chordal graphs forbid all holes.
2. Perfect graphs (Berge graphs) forbid all odd holes (in the graph and in its complement).
Perfect graphs form a subclass of odd-hole-free graphs.
3. Even-hole-free ${ }^{\dagger}$ graphs forbid all even holes.

${ }^{\dagger}$ being " H-free" means that it does not contain H as an induced subgraph

Problem statement

Motivating question:

What if all holes except those of a fixed length k is forbidden?

Notation:
For $k \geq 7, \mathcal{C}_{k}$ is the class of graphs, where every graph contains only holes of length k.

Objectives

For $k \geq 7, \mathcal{C}_{k}$ is the class of graphs, where every graph contains only holes of length k.

Thm: Structure of $\mathcal{C}_{k}^{\text {odd }}$

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a blowup of an odd template;
or has either:
- a universal clique; or
- a clique cutset.

Thm: Structure of $\mathcal{C}_{k}^{\text {even }}$

Every graph in $\mathcal{C}_{k}^{\text {even }}$ either is:

- a ring of length k; or
- a blowup of an even template;
or has either:
- a universal clique; or
- a clique cutset.

Objectives

For $k \geq 7, \mathcal{C}_{k}$ is the class of graphs, where every graph contains only holes of length k.

Thm: Structure of $\mathcal{C}_{k}^{\text {odd }}$

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a blowup of an odd template;
or has either:
- a universal clique; or
- a clique cutset.

Thm: Structure of $\mathcal{C}_{k}^{\text {even }}$

Every graph in $\mathcal{C}_{k}^{\text {even }}$ either is:

- a ring of length k; or
- a blowup of an even template;
or has either:
- a universal clique; or
- a clique cutset.

1. Clique cutsets

A cutset of a connected graph G is a set of vertices $S \mp V(G)$ such that $G \backslash S$ is not connected. Clique cutset is a cutset that induces a complete graph.

1. Clique cutsets

A cutset of a connected graph G is a set of vertices $S \Varangle V(G)$ such that $G \backslash S$ is not connected. Clique cutset is a cutset that induces a complete graph.

Why clique cutset?

- Attachment through a clique cutset does not create a new hole.
- Clique cutset is useful for divide-and-conquer approach for many algorithmic graph problems (e.g., coloring problem).

1. Clique cutsets

A cutset of a connected graph G is a set of vertices $S \Varangle V(G)$ such that $G \backslash S$ is not connected. Clique cutset is a cutset that induces a complete graph.

Why clique cutset?

- Attachment through a clique cutset does not create a new hole.
- Clique cutset is useful for divide-and-conquer approach for many algorithmic graph problems (e.g., coloring problem).

2. Universal clique

Figure: X is a universal clique in G

Implication of attaching a universal clique
Attaching a universal clique X to a graph G does not create a new hole
(i.e., G and $G+X$ have the same set of holes).

3. Rings

Remark:

- Rings of length k contain holes only of length k.
- Any hole is a ring.

4. Odd templates

Construction:

1. Create a threshold (i.e., $\left(P_{4}, C_{4}\right.$, $2 K_{2}$-free)) graph with vertex set $A=\left\{v_{1}, \ldots, v_{t}\right\}$.

Length $=$ the number of vertices

4. Odd templates

Construction:

1. Create a threshold (i.e., $\left(P_{4}, C_{4}\right.$, $2 K_{2}$-free)) graph with vertex set $A=\left\{v_{1}, \ldots, v_{t}\right\}$.
2. Take the complement graph of $G[A]$, with vertex set $A^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right\}$.

Length $=$ the number of vertices

4. Odd templates

Construction:

1. Create a threshold (i.e., $\left(P_{4}, C_{4}\right.$, $2 K_{2}$-free)) graph with vertex set $A=\left\{v_{1}, \ldots, v_{t}\right\}$.
2. Take the complement graph of $G[A]$, with vertex set $A^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right\}$.
3. For each $i \in[1, t]$, connect vertex of v_{i} to v_{i}^{\prime} with a path of length $\frac{k-1}{2}$.

Length $=$ the number of vertices

4. Odd templates

Construction:

1. Create a threshold (i.e., $\left(P_{4}, C_{4}\right.$, $2 K_{2}$-free)) graph with vertex set $A=\left\{v_{1}, \ldots, v_{t}\right\}$.
2. Take the complement graph of $G[A]$, with vertex set $A^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right\}$.
3. For each $i \in[1, t]$, connect vertex of v_{i} to v_{i}^{\prime} with a path of length $\frac{k-1}{2}$.
4. If $G[A]$ has an isolated vertex, then add a vertex that is complete to A. Similar for A^{\prime}.

Length $=$ the number of vertices

4. Odd templates

Construction:

1. Create a threshold (i.e., $\left(P_{4}, C_{4}\right.$, $2 K_{2}$-free)) graph with vertex set $A=\left\{v_{1}, \ldots, v_{t}\right\}$.
2. Take the complement graph of $G[A]$, with vertex set $A^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right\}$.
3. For each $i \in[1, t]$, connect vertex of v_{i} to v_{i}^{\prime} with a path of length $\frac{k-1}{2}$.
4. If $G[A]$ has an isolated vertex, then add a vertex that is complete to A. Similar for A^{\prime}.
5. Add some more vertices (possibly none) to some vertices of A (resp. A^{\prime}) by considering a certain type of hypergraph.
Length $=$ the number of vertices

4. Odd templates

Dewi Sintiari

Even templates construction

1. Create a threshold graph with vertex set $A=K \cup S$ where $K=\left\{v_{1}, \ldots, v_{t}\right\}$ induces a clique and $S=\left\{v_{t+1}, \ldots, v_{n}\right\}$ induces a stable set. Similarly, create a threshold graph $A^{\prime}=K^{\prime} \cup S^{\prime}$.

Length $=$ the number of vertices

Even templates construction

1. Create a threshold graph with vertex set $A=K \cup S$ where $K=\left\{v_{1}, \ldots, v_{t}\right\}$ induces a clique and $S=\left\{v_{t+1}, \ldots, v_{n}\right\}$ induces a stable set. Similarly, create a threshold graph $A^{\prime}=K^{\prime} \cup S^{\prime}$.
2. Connect v_{i} to v_{i}^{\prime} for $i \in[1, t]$ with a path of length $\frac{k}{2}$, and connect vertex of v_{i} to v_{i}^{\prime} for $i \in[t+1, n]$ with a path of length $\frac{k-2}{2}$.

Length $=$ the number of vertices

Even templates construction

1. Create a threshold graph with vertex set $A=K \cup S$ where $K=\left\{v_{1}, \ldots, v_{t}\right\}$ induces a clique and $S=\left\{v_{t+1}, \ldots, v_{n}\right\}$ induces a stable set. Similarly, create a threshold graph $A^{\prime}=K^{\prime} \cup S^{\prime}$.
2. Connect v_{i} to v_{i}^{\prime} for $i \in[1, t]$ with a path of length $\frac{k}{2}$, and connect vertex of v_{i} to v_{i}^{\prime} for $i \in[t+1, n]$ with a path of length $\frac{k-2}{2}$.
3. Add some edges from S to A (resp. from S^{\prime} to A^{\prime}), where $v_{i} \in A$ and $v_{j} \in S$ are adjacent if and only if $v_{i}^{\prime} v_{j}^{\prime} \notin E(G)$.

Length $=$ the number of vertices

Even templates construction

1. Create a threshold graph with vertex set $A=K \cup S$ where $K=\left\{v_{1}, \ldots, v_{t}\right\}$ induces a clique and $S=\left\{v_{t+1}, \ldots, v_{n}\right\}$ induces a stable set. Similarly, create a threshold graph $A^{\prime}=K^{\prime} \cup S^{\prime}$.
2. Connect v_{i} to v_{i}^{\prime} for $i \in[1, t]$ with a path of length $\frac{k}{2}$, and connect vertex of v_{i} to v_{i}^{\prime} for $i \in[t+1, n]$ with a path of length $\frac{k-2}{2}$.
3. Add some edges from S to A (resp. from S^{\prime} to A^{\prime}), where $v_{i} \in A$ and $v_{j} \in S$ are adjacent if and only if $v_{i}^{\prime} v_{j}^{\prime} \notin E(G)$.
4. Add some more vertices (possibly none) adjacent to some vertices of A (resp. A^{\prime}) by considering a certain type of hypergraph.
Length $=$ the number of vertices

Even templates

Blow-up of odd templates (even case is similar)

- Substitute each vertex $v \in V(G)$ with a clique K_{v} (of size ≥ 1).

Attachment between blowup of vertices:
(three possible attachments)

- For every $u v \notin E(G), K_{u}$ is anticomplete to K_{v}.
- For every $u v \in E(G)$, the adjacency between K_{u} and K_{v} are as in a ring.
- Additionally, for every edge $u v$, if the removal of $u v$ from G yields a 'bad hole', then K_{u} is complete to K_{v}.

Blow-up of odd templates (even case is similar)

Idea of proof

Attachment on holes

prism

Four configurations that appear when forbidding holes

theta

prism

pyramid

wheel

Figure: 4-configuration (dashed lines represent paths of length at least 1)

Class	theta	prism	pyramid	wheel
Odd-hole-free graphs	\checkmark	\checkmark	\times	\checkmark
Even-hole-free graphs	\times	\times	\checkmark	\checkmark
Chordal graphs	\times	\times	\times	\times

The four-configuration in \mathcal{C}_{k}

balanced theta

balanced prism

balanced pyramid

twin wheel

universal wheel

Proof 1: the class $\mathcal{C}_{k}^{\text {odd }}$

Attachment on holes:
Remark. Suppose that $G \in \mathcal{C}_{k}^{\text {odd }}$ does not have a clique cutset nor a universal clique.

Case 1: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when it is pyramid-free

When there is no pyramid, only odd rings possibly exist.

Case 2: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when there is a pyramid

Case 2: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when there is a pyramid

Case 2: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when there is a pyramid

Case 2: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when there is a pyramid

Case 2: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when there is a pyramid

Case 2: $\mathcal{C}_{k}^{\text {odd }}, k \geq 7$ when there is a pyramid

Why the top/bottom part is $\left(P_{4}, C_{4}\right)$-free?

Figure: If the top/bottom part is not P_{4}-free, then there would exist a "bad" hole

Thm: Structure of $\mathcal{C}_{k}^{\text {odd }}(k \geq 7)$

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a blowup of an odd template;
or has either:
- a universal clique; or
- a clique cutset.

Thm: Structure of $\mathcal{C}_{k}^{\text {odd }}(k \geq 7)$

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a blowup of an odd template;
or has either:
- a universal clique; or
- a clique cutset.

Thm: Structure of $\mathcal{C}_{k}^{\text {odd }}(k \geq 7)$

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a blowup of an odd template;
or has either:
- a universal clique; or
- a clique cutset.

Thm: Structure of $\mathcal{C}_{k}^{\text {odd }}(k \geq 7)$

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a blowup of an odd template;
or has either:
- a universal clique; or
- a clique cutset.

Idea of the proof (follows classical decomposition technique)

Let $G \in \mathcal{C}_{k}^{\text {odd }}$

If G is pyramid-free, then G is a ring of length k and possibly with a universal clique, or G has a clique cutset.

If G contains a pyramid, then:

- consider the largest blowup of template \mathbb{T} in G;
- study the attachment of every vertex $v \in G \backslash \mathbb{T}$ (if any);
- $N_{\mathbb{T}}[v]=\mathbb{T}$ (i.e., v is a universal clique); or $N_{\mathbb{T}}[v]$ induces a clique cutset.

Proof 2: the class $\mathcal{C}_{k}^{\text {even }}, k \geq 8$

Thm: Structure of $\mathcal{C}_{k}^{\text {even }}$

Every graph in $\mathcal{C}_{k}^{\text {even }}$ either is:

- a ring of length k; or
- a blowup of an even template ${ }^{a}$;
or has either:
- a universal clique; or
- a clique cutset.
${ }^{a}$ the blowup is similar to those of odd templates

Recall the attachment on holes (for even k)

Remark. Suppose that $G \in \mathcal{C}_{k}^{\text {odd }}$ does not have a clique cutset nor a universal clique.

prism

Even rings (when no theta, no prism)

Generalized theta (when no prism)

Generalized prism (when no theta)

Generalization (when thetas or prisms are present): even templates

Part 3: Another structural description and algorithmic application

Same structural description but in different formulation

Linda Cook and Paul Seymour independently study this class of graphs.
They describe a structure similar to template, and name it framework.

Figure: Structure similar to "template"

Theorem 1 (Horsfield (2022) [4])
The two structural descriptions are equivalent.

Some complexity results on $\mathcal{C}_{k}^{\text {odd }}(k \geq 7)$

The following results are proved by Horsfield (2022) [4].
\ddagger

1. Given a graph G and odd $k \geq 7$, deciding whether $G \in \mathcal{C}_{k}$ can be done in $\mathcal{O}\left(n^{8}\right)$.
2. Given weighted $G \in \mathcal{C}_{k}$, there is an algorithm finding the Maximum Weight Clique in G that works in $\mathcal{O}\left(n^{2} m\right)$.
3. Given weighted $G \in \mathcal{C}_{k}$, there is an algorithm finding the Maximum Weight Independent Set in G that works in $\mathcal{O}\left(n^{3} m\right)$.

Approach: modifying the decomposition theorem by decomposing the graph using one more cutset, that is called modified 2-join.

$$
{ }^{\ddagger} n=|V(G)| \text { and } m=|E(G)|
$$

Tools: 2-join in $\mathcal{C}_{k}^{\text {odd }}$ (definition)

Figure: A partition known as 2 -join, introduced by Cornuéjols and Cunningham (1985)

- $\left(X_{1}, X_{2}\right)$ is called 2-join partition of $V(G)$.
- $A_{1}, B_{1}, A_{2}, B_{2}$ are nonempty and pairwise disjoint.
- A_{i} is complete to B_{i} for $i=1,2$.
- There exists a (non-edge) path from A_{i} to B_{i} with interior in $X_{i} \backslash\left(A_{i} \cup B_{i}\right)$.
- There are no other edges between X_{1} and X_{2}

Tools: 2-join in $\mathcal{C}_{k}^{\text {odd }}$ (example)

2-join in a ring:

2-join in a generalized pyramid:

Tools: Modified 2-join in $\mathcal{C}_{k}^{\text {odd }}$ (Horsfield (2022))

Figure: Modified 2-join of type 1
Figure: Modified 2-join of type 2

Theorem 2 (Horsfield (2022))

Every graph in $\mathcal{C}_{k}^{\text {odd }}$ either is:

- a ring of length k; or
- a pyramid;
or has:
- a universal clique; or
- a clique cutset; or
- a modified 2-join (of type 1 or 2).

Open questions

1. Algorithmic application using the structural properties of $\mathcal{C}_{k}^{\text {even }}$
2. Structure of \mathcal{C}_{k}, when $k=4,5,6$
3. Is it possible to generalize the structure theorem into graphs:

- containing all odd holes (i.e., even-hole-free)?
- containing all even holes (i.e., odd-hole-free)?

Idea: "relaxing" the length of the paths connecting the top part and the bottom part in the blowup of odd-template.

References

圊 V．Boncompagni，I．Penev，K．Vǔsković．
Clique cutsets beyond chordal graphs．
Journal of Graph Theory， 2019.
围 L．Cook，J．Horsfield，M．Preissmann，C．Robin，P．Seymour，
N．L．D．Sintiari，N．Trotignon，K．Vǔsković．
Graphs with all holes the same length．
arXiv：2110．09970， 2021.
目 J．Horsfield，M．Preissmann，C．Robin，N．L．D．Sintiari，N．Trotignon，
K．Vǔsković．
When all holes have the same length．
arXiv：2203．11571， 2022.
冨 J．Horsfield．
Structural Characterisations of Hereditary Graph Classes and
Algorithmic Consequences（PhD Thesis）．
The University of Leeds， 2022.

Thank you for listening $;()$

