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Holes in a graph

Hole = chordless cycle of length at least 4;

it is even or odd depending on the parity of its length.

an odd hole an even hole

A subgraph H of G is an induced subgraph if uv ∈ E(H) iff uv ∈ E(G).

G H H ′

Figure: H is an induced subgraph of G , but H ′ is not
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Well-known graph classes forbidding holes

1. Chordal graphs forbid all holes.

2. Perfect graphs (Berge graphs) forbid all odd holes
(in the graph and in its complement).

Perfect graphs form a subclass of odd-hole-free graphs.

3. Even-hole-free� graphs forbid all even holes.

even-
hole-free
graphs

chordal
graphs

odd-
hole-free
graphs

perfect
graphs

�being “H-free” means that it does not contain H as an induced subgraph
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Problem statement

Motivating question:

What if all holes except those of a fixed length k
is forbidden?

odd-hole-
free graphs

C7
C9

C11
C13

C15

C6
C8 C10

C12

chordal
graphs

perfect
graphs even-hole-

free graphs

Notation:

For k ≥ 7, Ck is the class of graphs, where every graph contains
only holes of length k .
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Objectives

For k ≥ 7, Ck is the class of graphs, where every graph contains
only holes of length k .

Thm: Structure of Codd
k

Every graph in Codd
k either is:

▸ a ring of length k; or

▸ a blowup of an odd
template;

or has either:

▸ a universal clique; or

▸ a clique cutset.

Thm: Structure of Ceven
k

Every graph in Ceven
k either is:

▸ a ring of length k; or

▸ a blowup of an even
template;

or has either:

▸ a universal clique; or

▸ a clique cutset.
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1. Clique cutsets
A cutset of a connected graph G is a set of vertices S ⊊ V (G)

such that G ∖ S is not connected. Clique cutset is a cutset that
induces a complete graph.

Why clique cutset?
▸ Attachment through a clique cutset does not create a new hole.

▸ Clique cutset is useful for divide-and-conquer approach for many

algorithmic graph problems (e.g., coloring problem).
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2. Universal clique

X

G \X

Figure: X is a universal clique in G

Implication of attaching a universal clique

Attaching a universal clique X to a graph G

does not create a new hole

(i.e., G and G +X have the same set of holes).
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3. Rings
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3. Rings

Xi

Xi+1

Xi−1
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3. Rings

Xi−1 Xi Xi+1

y2

y1

z2

z3

z1x1

x2

x3

x4
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3. Rings

Xi

Xi+1

Xi−1

Remark:

▸ Rings of length k contain holes only of length k .

▸ Any hole is a ring.
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4. Odd templates

Construction:

A

1. Create a threshold (i.e., (P4, C4,
2K2-free)) graph with vertex set
A = {v1, . . . , vt}.

2. Take the complement graph of G[A],
with vertex set A′ = {v ′1, . . . , v ′t}.

3. For each i ∈ [1, t], connect vertex of vi to
v ′i with a path of length k−1

2
.

4. If G[A] has an isolated vertex, then add a
vertex that is complete to A.
Similar for A′.

5. Add some more vertices (possibly none)
to some vertices of A (resp. A′) by
considering a certain type of hypergraph.

Length = the number of vertices
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4. Odd templates
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Even templates construction

A

A′

1. Create a threshold graph with vertex set
A = K ∪ S where K = {v1, . . . , vt} induces a clique
and S = {vt+1, . . . , vn} induces a stable set.
Similarly, create a threshold graph A′ = K ′ ∪ S ′.

2. Connect vi to v ′i for i ∈ [1, t] with a path of
length k

2
, and connect vertex of vi to v ′i for

i ∈ [t + 1,n] with a path of length k−2
2

.

3. Add some edges from S to A (resp. from S ′ to
A′), where vi ∈ A and vj ∈ S are adjacent
if and only if v ′i v

′

j ∉ E(G).

4. Add some more vertices (possibly none) adjacent
to some vertices of A (resp. A′) by considering a
certain type of hypergraph.

Length = the number of vertices
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Even templates

10 9 8 7 6 4 3 2 15

10 9 8 7 6 4 3 2 15

threshold

threshold

k−2
2

k−2
2

k−2
2

k−2
2

k−2
2

k
2

k
2

k
2

k
2

k
2
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Blow-up of odd templates (even case is similar)

▸ Substitute each vertex v ∈ V (G) with a clique Kv

(of size ≥ 1).

Attachment between blowup of vertices:
(three possible attachments)

▸ For every uv ∉ E(G), Ku is anticomplete to Kv .

▸ For every uv ∈ E(G), the adjacency between Ku and Kv are
as in a ring.

▸ Additionally, for every edge uv , if the removal of uv from G
yields a ’bad hole’, then Ku is complete to Kv .
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Blow-up of odd templates (even case is similar)

A

A′

optional

flat

solid
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Idea of proof
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Attachment on holes

clique
cutset

theta
prism

pyramid wheel universal
wheel
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Four configurations that appear when forbidding holes

wheeltheta prism pyramid

Figure: 4-configuration (dashed lines represent paths of length at least 1)

Class theta prism pyramid wheel

Odd-hole-free graphs ×

Even-hole-free graphs × ×

Chordal graphs × × × ×
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The four-configuration in Ck

k−1
2

k−1
2

k−1
2

balanced pyramid

k−2
2

k−2
2

k−2
2

balanced prismbalanced theta

k
2

k
2

k
2

twin wheel

k k

universal wheel
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Proof 1: the class Codd
k

Attachment on holes:

Remark. Suppose that G ∈ C
odd
k does not have a clique cutset nor

a universal clique.

clique
cutset

theta
prism

pyramid twin
wheel

universal
wheel
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Case 1: Codd
k , k ≥ 7 when it is pyramid-free

pyramid twin
wheel

Xi

Xi+1

Xi−1

When there is no pyramid,
only odd rings possibly exist.
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Case 2: Codd
k , k ≥ 7 when there is a pyramid

pyramid

twin
wheel
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Case 2: Codd
k , k ≥ 7 when there is a pyramid
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Case 2: Codd
k , k ≥ 7 when there is a pyramid
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Case 2: Codd
k , k ≥ 7 when there is a pyramid
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Case 2: Codd
k , k ≥ 7 when there is a pyramid

hole of length 9
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Case 2: Codd
k , k ≥ 7 when there is a pyramid
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Why the top/bottom part is (P4, C4)-free?

9-hole
10-hole

P4

Figure: If the top/bottom part is not P4-free, then there would exist a
“bad” hole
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Thm: Structure of Codd
k (k ≥ 7)

Every graph in Codd
k either is:

▸ a ring of length k ; or

▸ a blowup of an odd template;

or has either:

▸ a universal clique; or

▸ a clique cutset.

Xi

Xi+1

Xi−1
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A

A′
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XG \X
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Idea of the proof (follows classical decomposition technique)

Let G ∈ C
odd
k

If G is pyramid-free, then G is a ring of length k and possibly with
a universal clique, or G has a clique cutset.

If G contains a pyramid, then:

▸ consider the largest blowup of template T in G ;

▸ study the attachment of every vertex v ∈ G ∖T (if any);

▸ NT[v] = T (i.e., v is a universal clique);
or NT[v] induces a clique cutset.
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Proof 2: the class Ceven
k , k ≥ 8

Thm: Structure of Ceven
k

Every graph in Ceven
k either is:

▸ a ring of length k ; or

▸ a blowup of an even template a;

or has either:

▸ a universal clique; or

▸ a clique cutset.

a the blowup is similar to those of odd templates
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Recall the attachment on holes (for even k)

Remark. Suppose that G ∈ C
odd
k does not have a clique cutset nor

a universal clique.

clique
cutset

theta
prism

pyramid twin
wheel

universal
wheel
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Even rings (when no theta, no prism)
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Generalized theta (when no prism)
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Generalized prism (when no theta)
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Generalization (when thetas or prisms are present):
even templates

10 9 8 7 6 4 3 2 15

10 9 8 7 6 4 3 2 15

threshold

threshold

k−2
2

k−2
2

k−2
2

k−2
2

k−2
2

k
2

k
2

k
2

k
2

k
2
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Part 3: Another structural
description and algorithmic

application
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Same structural description but in different formulation

Linda Cook and Paul Seymour independently study this class of graphs.

They describe a structure similar to template, and name it framework.

Figure: Structure similar to “template”

Theorem 1 (Horsfield (2022) [4])

The two structural descriptions are equivalent.
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Some complexity results on Codd
k (k ≥ 7)

The following results are proved by Horsfield (2022) [4].

�

1. Given a graph G and odd k ≥ 7, deciding whether G ∈ Ck can be
done in O(n8

).

2. Given weighted G ∈ Ck , there is an algorithm finding the
Maximum Weight Clique in G that works in O(n2m).

3. Given weighted G ∈ Ck , there is an algorithm finding the
Maximum Weight Independent Set in G that works in O(n3m).

Approach: modifying the decomposition theorem by decomposing
the graph using one more cutset, that is called modified 2-join.

�n = ∣V (G)∣ and m = ∣E(G)∣
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Tools: 2-join in Codd
k (definition)

X1 X2

A1 A2

B2B1

Figure: A partition known
as 2-join, introduced by
Cornuéjols and Cunningham

(1985)

▸ (X1,X2) is called 2-join partition of
V (G).

▸ A1,B1,A2,B2 are nonempty and
pairwise disjoint.

▸ Ai is complete to Bi for i = 1,2.

▸ There exists a (non-edge) path from Ai

to Bi with interior in Xi ∖ (Ai ∪Bi).

▸ There are no other edges between X1

and X2
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Tools: 2-join in Codd
k (example)

X1 X2

A1 A2

B2B1

Figure: A partition known
as 2-join, introduced by
Cornuéjols and Cunningham

(1985)

2-join in a ring:

X1

X2

A1

B1

A2

B2

2-join in a generalized pyramid:

X1

B2

A2

B1

A1

X2
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Tools: Modified 2-join in Codd
k (Horsfield (2022))

X1 X2

A1

B1 B2

A2

Figure: Modified 2-join of type 1

X1 X2

A1

B1 B2

A2

Figure: Modified 2-join of type 2

Theorem 2 (Horsfield (2022))

Every graph in Coddk either is:

▸ a ring of length k; or

▸ a pyramid;

or has:

▸ a universal clique; or

▸ a clique cutset; or

▸ a modified 2-join (of type 1 or 2).
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Open questions

1. Algorithmic application using the structural properties of Ceven
k

2. Structure of Ck , when k = 4,5,6

3. Is it possible to generalize the structure theorem into graphs:

▸ containing all odd holes (i.e., even-hole-free)?
▸ containing all even holes (i.e., odd-hole-free)?

Idea: “relaxing” the length of

the paths connecting the top

part and the bottom part in the

blowup of odd-template.
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Thank you for listening ,,
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