When all holes in a graph have the same length

Dewi Sintiari

Wilfrid Laurier University *

Based on a joint work with:

Jake Horsfield Myriam Preissmann Cléophée Robin Nicolas Trotignon Kristina Vušković

Canadian Discrete and Algorithmic Mathematics (CanaDAM)

Winnipeg, Canada

5-8 June 2023

 $^{^{}st}$ the presenter is currently a non-permanent faculty member at Universitas Pendidikan Ganesha, Indonesia

Holes in a graph

<u>Hole</u> = chordless cycle of length at least 4;

it is *even* or *odd* depending on the parity of its length.

A subgraph H of G is an *induced subgraph* if $uv \in E(H)$ iff $uv \in E(G)$.

Figure: H is an induced subgraph of G, but H' is not

Well-known graph classes forbidding holes

- 1. Chordal graphs forbid all holes.
- 2. **Perfect graphs (Berge graphs)** forbid all odd holes (in the graph and in its complement).

Perfect graphs form a subclass of odd-hole-free graphs.

3. Even-hole-free[†] graphs forbid all even holes.

[†]being "H-free" means that it does not contain H as an *induced subgraph*

Problem statement

Motivating question:

What if all holes except those of a fixed length k is forbidden?

Notation:

For $k \ge 7$, C_k is the class of graphs, where every graph contains only holes of length k.

Objectives

For $k \ge 7$, C_k is the class of graphs, where every graph **contains** only holes of length k.

Objectives

For $k \ge 7$, C_k is the class of graphs, where every graph **contains** only holes of length k.

1. Clique cutsets

A *cutset* of a connected graph G is a set of vertices $S \not\subseteq V(G)$ such that $G \setminus S$ is not connected. *Clique cutset* is a cutset that induces a complete graph.

1. Clique cutsets

A *cutset* of a connected graph G is a set of vertices $S \not\subseteq V(G)$ such that $G \setminus S$ is not connected. *Clique cutset* is a cutset that induces a complete graph.

Why clique cutset?

- Attachment through a clique cutset does not create a new hole.
- Clique cutset is useful for divide-and-conquer approach for many algorithmic graph problems (*e.g., coloring problem*).

1. Clique cutsets

A *cutset* of a connected graph G is a set of vertices $S \not\subseteq V(G)$ such that $G \setminus S$ is not connected. *Clique cutset* is a cutset that induces a complete graph.

Why clique cutset?

- Attachment through a clique cutset does not create a new hole.
- Clique cutset is useful for divide-and-conquer approach for many algorithmic graph problems (*e.g., coloring problem*).

2. Universal clique

Figure: X is a universal clique in G

Implication of attaching a universal clique

Attaching a universal clique X to a graph G

does not create a new hole

(i.e., G and G + X have the same set of holes).

Remark:

- Rings of length k contain holes only of length k.
- Any hole is a ring.

Construction:

1. Create a *threshold* (i.e., $(P_4, C_4, 2K_2$ -free)) graph with vertex set $A = \{v_1, \ldots, v_t\}.$

Construction:

- 1. Create a *threshold* (i.e., $(P_4, C_4, 2K_2$ -free)) graph with vertex set $A = \{v_1, \ldots, v_t\}.$
- 2. Take the complement graph of G[A], with vertex set $A' = \{v'_1, \dots, v'_t\}$.

Construction:

- 1. Create a *threshold* (i.e., $(P_4, C_4, 2K_2$ -free)) graph with vertex set $A = \{v_1, \ldots, v_t\}.$
- 2. Take the complement graph of G[A], with vertex set $A' = \{v'_1, \dots, v'_t\}$.
- 3. For each $i \in [1, t]$, connect vertex of v_i to v'_i with a path of length $\frac{k-1}{2}$.

Construction:

- 1. Create a *threshold* (i.e., $(P_4, C_4, 2K_2$ -free)) graph with vertex set $A = \{v_1, \ldots, v_t\}.$
- 2. Take the complement graph of G[A], with vertex set $A' = \{v'_1, \dots, v'_t\}$.
- 3. For each $i \in [1, t]$, connect vertex of v_i to v'_i with a path of length $\frac{k-1}{2}$.
- If G[A] has an isolated vertex, then add a vertex that is complete to A. Similar for A'.

Construction:

- 1. Create a *threshold* (i.e., $(P_4, C_4, 2K_2$ -free)) graph with vertex set $A = \{v_1, \ldots, v_t\}.$
- 2. Take the complement graph of G[A], with vertex set $A' = \{v'_1, \dots, v'_t\}$.
- 3. For each $i \in [1, t]$, connect vertex of v_i to v'_i with a path of length $\frac{k-1}{2}$.
- If G[A] has an isolated vertex, then add a vertex that is complete to A. Similar for A'.
- Add some more vertices (possibly none) to some vertices of A (resp. A') by considering a certain type of hypergraph.

1. Create a *threshold* graph with vertex set $A = K \cup S$ where $K = \{v_1, \dots, v_t\}$ induces a clique and $S = \{v_{t+1}, \dots, v_n\}$ induces a stable set. Similarly, create a threshold graph $A' = K' \cup S'$.

- 1. Create a *threshold* graph with vertex set $A = K \cup S$ where $K = \{v_1, \dots, v_t\}$ induces a clique and $S = \{v_{t+1}, \dots, v_n\}$ induces a stable set. Similarly, create a threshold graph $A' = K' \cup S'$.
- Connect v_i to v'_i for i ∈ [1, t] with a path of length k/2, and connect vertex of v_i to v'_i for i ∈ [t + 1, n] with a path of length k-2/2.

Length = the number of vertices

- 1. Create a *threshold* graph with vertex set $A = K \cup S$ where $K = \{v_1, \dots, v_t\}$ induces a clique and $S = \{v_{t+1}, \dots, v_n\}$ induces a stable set. Similarly, create a threshold graph $A' = K' \cup S'$.
- Connect v_i to v'_i for i ∈ [1, t] with a path of length k/2, and connect vertex of v_i to v'_i for i ∈ [t + 1, n] with a path of length k-2/2.
- Add some edges from S to A (resp. from S' to A'), where v_i ∈ A and v_j ∈ S are adjacent if and only if v'_iv'_j ∉ E(G).

- 1. Create a *threshold* graph with vertex set $A = K \cup S$ where $K = \{v_1, \dots, v_t\}$ induces a clique and $S = \{v_{t+1}, \dots, v_n\}$ induces a stable set. Similarly, create a threshold graph $A' = K' \cup S'$.
- Connect v_i to v'_i for i ∈ [1, t] with a path of length k/2, and connect vertex of v_i to v'_i for i ∈ [t + 1, n] with a path of length k-2/2.
- Add some edges from S to A (resp. from S' to A'), where v_i ∈ A and v_j ∈ S are adjacent if and only if v'_iv'_j ∉ E(G).
- Add some more vertices (possibly none) adjacent to some vertices of A (resp. A') by considering a certain type of hypergraph.

Length = the number of vertices

Even templates

Blow-up of odd templates (even case is similar)

Substitute each vertex v ∈ V(G) with a clique K_v (of size ≥ 1).

Attachment between blowup of vertices:

(three possible attachments)

- For every $uv \notin E(G)$, K_u is anticomplete to K_v .
- For every uv ∈ E(G), the adjacency between K_u and K_v are as in a ring.
- Additionally, for every edge uv, if the removal of uv from G yields a 'bad hole', then K_u is complete to K_v.

Blow-up of *odd* templates (even case is similar)

Idea of proof

Attachment on holes

Four configurations that appear when forbidding holes

Figure: 4-configuration (dashed lines represent paths of length at least 1)

Class	theta	prism	pyramid	wheel
Odd-hole-free graphs	\checkmark	\checkmark	×	\checkmark
Even-hole-free graphs	×	×	\checkmark	\checkmark
Chordal graphs	×	×	×	×

The four-configuration in C_k

balanced theta

balanced prism

balanced pyramid

twin wheel

universal wheel

Proof 1: the class C_k^{odd}

Attachment on holes:

Remark. Suppose that $G \in C_k^{\text{odd}}$ does not have a *clique cutset* nor a *universal clique*.

Case 1: C_k^{odd} , $k \ge 7$ when it is pyramid-free

When there is *no pyramid*, only odd rings possibly exist.

Case 2: C_k^{odd} , $k \ge 7$ when there is a pyramid

Case 2: C_k^{odd} , $k \ge 7$ when there is a pyramid

Why the top/bottom part is (P_4, C_4) -free?

Figure: If the top/bottom part is **not** P_4 -free, then there would exist a **"bad" hole**

Every graph in C_k^{odd} either is:

- a ring of length k; or
- a blowup of an odd template;

- a universal clique; or
- a clique cutset.

Every graph in C_k^{odd} either is:

- a ring of length k; or
- a blowup of an odd template;

- a universal clique; or
- a clique cutset.

Every graph in C_k^{odd} either is:

- a ring of length k; or
- a blowup of an odd template;

- a universal clique; or
- a clique cutset.

Every graph in C_k^{odd} either is:

- a ring of length k; or
- a blowup of an odd template;

- a universal clique; or
- a clique cutset.

Idea of the proof (follows classical decomposition technique)

Let
$$G \in \mathcal{C}_k^{\text{odd}}$$

If G is pyramid-free, then G is a ring of length k and possibly with a universal clique, or G has a clique cutset.

If G contains a pyramid, then:

- consider the *largest blowup of template* \mathbb{T} in *G*;
- ▶ study the attachment of every vertex $v \in G \times \mathbb{T}$ (if any);
- N_T[v] = T (i.e., v is a universal clique); or N_T[v] induces a clique cutset.

Proof 2: the class C_k^{even} , $k \ge 8$

Recall the attachment on holes (for *even* k)

Remark. Suppose that $G \in C_k^{\text{odd}}$ does not have a *clique cutset* nor a *universal clique*.

Even rings (when no theta, no prism)

Generalized theta (when no prism)

Generalized prism (when no theta)

Generalization (when thetas or prisms are present): *even* templates

Part 3: Another structural description and algorithmic application

Same structural description but in different formulation

Linda Cook and Paul Seymour independently study this class of graphs. They describe a structure similar to *template*, and name it framework.

Figure: Structure similar to "template"

Theorem 1 (Horsfield (2022) [4])

The two structural descriptions are equivalent.

Some complexity results on C_k^{odd} $(k \ge 7)$

The following results are proved by *Horsfield (2022)* [4]. ‡

- 1. Given a graph G and odd $k \ge 7$, deciding whether $G \in C_k$ can be done in $\mathcal{O}(n^8)$.
- 2. Given weighted $G \in C_k$, there is an algorithm finding the Maximum Weight Clique in G that works in $O(n^2m)$.
- Given weighted G ∈ C_k, there is an algorithm finding the Maximum Weight Independent Set in G that works in O(n³m).

Approach: modifying the decomposition theorem by *decomposing the graph using one more cutset*, that is called *modified 2-join*.

 ${}^{\ddagger}n = |V(G)|$ and m = |E(G)|

Tools: 2-join in C_k^{odd} (definition)

Figure: A partition known as *2-join*, introduced by Cornuéjols and Cunningham (1985)

- (X₁, X₂) is called 2-join partition of V(G).
- ► A₁, B₁, A₂, B₂ are nonempty and pairwise disjoint.
- A_i is complete to B_i for i = 1, 2.
- There exists a (non-edge) path from A_i to B_i with interior in X_i \ (A_i ∪ B_i).
- There are no other edges between X₁ and X₂

Tools: 2-join in C_k^{odd} (example)

2-join in a ring:

Figure: A partition known as *2-join*, introduced by Cornuéjols and Cunningham (1985)

2-join in a generalized pyramid:

Tools: Modified 2-join in C_k^{odd} (Horsfield (2022))

Figure: Modified 2-join of type 1

Figure: Modified 2-join of type 2

Theorem 2 (Horsfield (2022))

Every graph in C_k^{odd} either is:

- a ring of length k; or
- a pyramid;

or has:

- a universal clique; or
- a clique cutset; or
- a modified 2-join (of type 1 or 2).

Open questions

- 1. Algorithmic application using the structural properties of C_k^{even}
- 2. Structure of C_k , when k = 4, 5, 6
- 3. Is it possible to generalize the structure theorem into graphs:
 - containing all odd holes (i.e., even-hole-free)?
 - containing all even holes (i.e., odd-hole-free)?

Idea: "relaxing" the length of the paths connecting the top part and the bottom part in the blowup of odd-template.

References

V. Boncompagni, I. Penev, K. Vůsković. Clique cutsets beyond chordal graphs. Journal of Graph Theory, 2019.

L. Cook, J. Horsfield, M. Preissmann, C. Robin, P. Seymour, N.L.D. Sintiari, N. Trotignon, K. Vŭsković. Graphs with all holes the same length. arXiv:2110.09970, 2021.

 J. Horsfield, M. Preissmann, C. Robin, N.L.D. Sintiari, N. Trotignon, K. Vůsković.
When all holes have the same length. arXiv:2203.11571, 2022.

J. Horsfield.

Structural Characterisations of Hereditary Graph Classes and Algorithmic Consequences (PhD Thesis).

The University of Leeds, 2022.

Thank you for listening ©©